Acta Crystallographica Section F

Structural Biology
and Crystallization Communications

ISSN 1744-3091

Jeyaraman Jeyakanthan, ${ }^{\text {a* }}$ Subbiah Thamotharan, ${ }^{\text {b }}$ Santosh Panjikar, ${ }^{\text {c }}$ Yoshiaki Kitamura, ${ }^{\text {d }}$ Noriko Nakagawa, ${ }^{\text {d,e }}$ Akeo Shinkai, ${ }^{\text {d }}$ Seiki Kuramitsu ${ }^{\mathrm{d}, \mathrm{e}}$ and Shigeyuki Yokoyama ${ }^{\text {f,g }}$

${ }^{\mathrm{a}}$ National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan, ${ }^{\text {b }}$ Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India, ${ }^{\text {c EMBL Hamburg }}$ Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany, ${ }^{\text {d RIKEN SPring-8 }}$ Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan, ${ }^{\mathbf{e}}$ Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan, 'fRIKEN Systems and Structural Biology Center, Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan, and ${ }^{\mathbf{g}}$ Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Correspondence e-mail: kanthan@spring8.or.jp

Received 23 September 2009
Accepted 6 December 2009

(C) 2010 International Union of Crystallography All rights reserved

Expression, purification and X-ray analysis of 1,3-propanediol dehydrogenase ($A q_{\text {_1 145 }}$) from Aquifex aeolicus VF5

1,3-Propanediol dehydrogenase is an enzyme that catalyzes the oxidation of 1,3-propanediol to 3-hydroxypropanal with the simultaneous reduction of NADP^{+}to NADPH. SeMet-labelled 1,3-propanediol dehydrogenase protein from the hyperthermophilic bacterium Aquifex aeolicus VF5 was overexpressed in Escherichia coli and purified to homogeneity. Crystals of this protein were grown from an acidic buffer with ammonium sulfate as the precipitant. Singlewavelength data were collected at the selenium peak to a resolution of $2.4 \AA$. The crystal belonged to space group $P 3_{2}$, with unit-cell parameters $a=b=142.19$, $c=123.34 \AA$. The structure contained two dimers in the asymmetric unit and was solved by the MR-SAD approach.

1. Introduction

Aquifex aeolicus is a hyperthermophilic bacterium with a growthtemperature maximum near 368 K . Its complete genome, which is only one-third of the size of the Escherichia coli genome, contains 1512 open reading frames (ORFs). A. aeolicus represents the earliest branch in bacterial phylogeny (Pitulle et al., 1994) and is a hydrogenoxidizing, microaerophilic and obligate chemolithoautotroph (Huber et al., 1992). Many hyperthermophilic organisms utilize carbohydrates as carbon and energy sources (Stetter, 1996).

1,3-Propanediol (1,3-PD) has long been an important chemical and is used in the polymer and cosmetics industries. The synthetic production of 1,3-PD involves toxic intermediates (Marçal et al., 2009; Raynaud et al., 2003) and therefore 1,3-PD has been produced from microorganisms via microbial fermentation of glycerol as an alternative to chemical synthesis (Cameron et al., 1998). 1,3-PD has successfully been produced in some anaerobic and microaerophilic bacteria such as Klebsiella, Citrobacter and Clostridum (Luers et al., 1997; Bouvet et al., 1995; Daniel et al., 1995). 1,3-PD has also been produced by glycerol fermentation using a two-step sequential enzymatic reaction in the microorganism Lactobacillus (Veiga-daCunha \& Foster, 1992; Veiga da Cunha \& Foster, 1992; Talarico et al., 1990). In the reductive pathway, glycerol is converted to the intermediate 3-hydroxypropionaldehyde by a vitamin- B_{12}-dependent glycerol dehydratase. The intermediate product 3-hydroxypropionaldehyde is then reduced to 1,3-PD by NADH-dependent 1,3-PD dehydrogenase (Ahrens et al., 1998; Cheng et al., 2006).
The $A q_{-} 1145$ gene of A. aeolicus VF5 encodes a 1,3-propanediol dehydrogenase protein containing 387 amino-acid residues with a calculated molecular weight of 43 kDa and a predicted pI of 5.8. A BLAST (Altschul et al., 1997) search of the Aq_1145 protein against the Swiss-Prot database indicated that its highest level of sequence similarity (35%) was to 1,3 -propanediol oxidoreductase from Klebsiella pneumoniae (PDB code 3bfj; Marçal et al., 2009) and an ironcontaining alcohol dehydrogenase (TM0920) from Thermotoga maritima (PDB code 1o2d; Schwarzenbacher et al., 2004). Accordingly, $A q_{-} 1145$ was annotated as an iron-dependent 1,3-propanediol dehydrogenase. Here, we report the expression, purification, crystallization and preliminary X-ray crystallographic studies of a 1,3-propanediol dehydrogenase enzyme from the hyperthermophilic bacterium A. aeolicus VF5.

2. Materials and methods

2.1. Expression and purification

The $A q_{-} 1145$ gene was amplified by polymerase chain reaction from the A. aeolicus VF5 genome and cloned into the expression plasmid pET-21a (Novagen). Escherichia coli BL21-CodonPlus (DE3)-RIL-X cells were transformed with the expression plasmid. The transformants were pre-cultured at 310 K for $6-7 \mathrm{~h}$ in a medium containing 1.0% polypeptone (Wako Co. Ltd, Japan), 0.5% yeast extract, $0.5 \% \mathrm{NaCl}$ and $50 \mu \mathrm{~g} \mathrm{ml}^{-1}$ ampicillin pH 7.0 and grown overnight at 310 K in SeMet core medium containing $0.13 \mu M$ L-selenomethionine, 21 amino acids and bases (LeMaster \& Richards, 1985), 1% pre-mixed vitamin solutions (Sigma), 1.0\% lactose, $100 \mu \mathrm{~g} \mathrm{ml}^{-1}$ ampicillin pH 7.0 and $25 \mu \mathrm{~g} \mathrm{ml}^{-1}$ chloramphenicol. The cells were lysed by sonication in $20 \mathrm{~m} M$ Tris- HCl pH 8.0 containing $500 \mathrm{~m} M \mathrm{NaCl}, 5 \mathrm{~m} M \beta$-mercaptoethanol and $1 \mathrm{~m} M$ phenylmethylsulfonyl fluoride (PMSF). The lysate was incubated at 343 K for 10 min and centrifuged at $14000 \mathrm{rev} \mathrm{min}^{-1}$ for 30 min at 277 K . After buffer exchange on a HiPrep 26/10 desalting column (GE Healthcare Biosciences) pre-equilibrated with 20 mM Tris- HCl pH 8.0 , the protein sample was loaded onto a TOYOPEARL SuperQ-650M column (Tosoh) pre-equilibrated with $20 \mathrm{~m} M$ Tris- HCl pH 8.0. The $A q _1145$ protein bound to the column and eluted at $210 \mathrm{~m} M \mathrm{NaCl}$ in a linear gradient from 0 to $400 \mathrm{~m} M \mathrm{NaCl}$. The $A q_{-} 1145$-containing fraction was subjected to buffer exchange with $20 \mathrm{~m} M$ Tris- HCl pH 8.0 and loaded onto a RESOURCE Q column (GE Healthcare Biosciences) pre-equilibrated with the same buffer. The protein bound to the column and eluted at approximately $190 \mathrm{~m} M \mathrm{NaCl}$ in a linear gradient from 0 to $300 \mathrm{~m} M \mathrm{NaCl}$. The $A q_{-} 1145$ protein was subjected to buffer exchange with $10 \mathrm{~m} M$ potassium phosphate buffer pH 7.0 and loaded onto a Bio-Scale CHT20-I column (Bio-Rad) preequilibrated with the same buffer. The protein bound to the column and eluted at $99.8 \mathrm{~m} M$ potassium phosphate in a linear gradient from 10 to $500 \mathrm{~m} M$ potassium phosphate pH 7.0 . The $A q_{-} 1145$ protein was subjected to gel filtration on a HiLoad 16/60 Superdex 200 pg column (GE Healthcare Biosciences) pre-equilibrated with $20 \mathrm{~m} M$ Tris- HCl , $200 \mathrm{~m} M \mathrm{NaCl} \mathrm{pH}$ 8.0. The gel-filtration elution profile indicated that the protein was a monomer in solution. The fraction containing the protein was collected and the purified $A q_{-} 1145$ protein was concentrated using a Vivaspin device with a 10 kDa cutoff (Sartorius). The final preparation was dissolved in $20 \mathrm{~m} M$ Tris- HCl containing $200 \mathrm{~m} M \mathrm{NaCl}$ and $1 \mathrm{~m} M$ DTT pH 8.0 and the yield of the purified protein was 21.0 mg per litre of culture medium. The purified SeMetlabelled $A q_{-} 1145$ protein was homogeneous on native PAGE.

2.2. Crystallization

The 1,3-PD protein from A. aeolicus VF5 ($A q_{-} 1145$) was crystallized at 291 K using the microbatch-under-oil method in Nunc HLA plates (Nalge Nunc International). The purified SeMet-substituted protein was screened for preliminary crystallization conditions using the TERA robotic automatic crystallization system (Sugahara \& Miyano, 2002) with 144 conditions. The growth of SeMet-substituted 1,3-PD crystals was further optimized using a droplet consisting of $1 \mu \mathrm{l}$ SeMet-substituted protein $\left(21 \mathrm{mg} \mathrm{ml}^{-1}\right.$ protein in $20 \mathrm{~m} M$ Tris$\mathrm{HCl} \mathrm{pH} 8.0,200 \mathrm{~m} M \mathrm{NaCl}$ and $1 \mathrm{~m} M$ DTT) mixed with $1 \mu \mathrm{l}$ of a solution containing 1.22 M ammonium sulfate, 0.1 M citrate- HCl pH 5.1 and $10 \%(w / w)$ dioxane. The SeMet-substituted $A q_{-} 1145$ protein crystals (Fig. 1) reached final dimensions of $0.1 \times 0.1 \times 0.2 \mathrm{~mm}$ after 20 d and were used for X-ray diffraction experiments.

Table 1
X-ray data collection for 1,3-propanediol dehydrogenase.
Values in parentheses are for the last resolution bin.

X-ray source	BL26B1, SPring-8
Wavelength (\AA)	0.97932
Detector	Jupiter 210 CCD
Temperature (K)	100
Crystal-to-detector distance (mm)	200
Space group	$P 3_{2}$
Unit-cell parameters (A)	$a=b=142.19, c=123.34$
Resolution range (A)	$50-2.4(2.49-2.4)$
Total reflections	610409
Unique reflections	108448
Completeness (\%)	$100(100)$
$R_{\text {merge } \dagger(\%)}(I / \sigma(I)\rangle$	$7.9(59.7)$
Redundancy	$12.8(1.2)$
$V_{\mathrm{M}}\left(\AA^{3} \mathrm{Da}^{-1}\right)$	5.6
Z	4.1
Solvent content $(\%)$	4

$\dagger R_{\text {merge }}=\sum_{h k l} \sum_{i}\left|I_{i}(h k l)-\langle I(h k l)\rangle\right| / \sum_{h k l} \sum_{i} I_{i}(h k l)$, where $I_{i}(h k l)$ is the observed intensity and $\langle I(h k l)\rangle$ is the average intensity for multiple measurements.

2.3. Data collection and processing

Prior to data collection, the crystal was transferred to mother liquor containing $20 \%(v / v)$ glycerol for cryoprotection and cooled in a nitrogen-gas stream at 100 K using the SPring-8 Precise Automatic Cryo-sample Exchanger (SPACE), which was controlled using the BSS beamline-scheduling software (Ueno et al., 2004, 2005). Diffraction data were collected from the SeMet-substituted 1,3propanediol dehydrogenase protein crystal at the selenium peak $\left(\lambda_{\text {peak }}=0.97932 \AA\right)$ on RIKEN Structural Genomics Beamline I (BL26B1) at SPring-8 (Hyogo, Japan) with a Jupiter 210 CCD detector (Rigaku MSC Co., Tokyo Japan). The crystal-to-detector distance was maintained at 200 mm . The crystal diffracted to $2.4 \AA$ resolution. All intensity data were indexed and integrated using DENZO (Otwinowski \& Minor, 1997) and scaled using SCALEPACK (Otwinowski \& Minor, 1997). The SAD (single-wavelength anomalous diffraction) data statistics for the SeMet-labelled crystal are summarized in Table 1. Intensities were converted to structurefactor amplitudes using the program TRUNCATE (French \& Wilson, 1978; Collaborative Computational Project, Number 4, 1994). The self-rotation function was calculated using the program MOLREP

Figure 1
Single crystals of 1,3-propanediol dehydrogenase (Aq_1145) from A. aeolicus VF5.

crystallization communications

(Collaborative Computational Project, Number 4, 1994; Vagin \& Teplyakov, 1997).

3. Results and discussion

The SeMet-labelled 1,3-propanediol dehydrogenase protein from A. aeolicus VF5 was successfully overexpressed in E. coli strain BL21 (DE3) and purified to homogeneity. The protein contains 387 aminoacid residues with a molecular weight of 43 kDa . The Matthews coefficient (Matthews, 1968) was calculated to be $4.1 \AA^{3} \mathrm{Da}^{-1}$, with a solvent content of 70.3%, assuming the presence of four monomers in the asymmetric unit. Analysis of self-rotation peaks showed one high non-origin peak with one noncrystallographic twofold axis between the crystallographic x and y axes, confirming the presence of two dimers in the asymmetric unit. Gel filtration and nondenaturing polyacrylamide gel electrophoresis demonstrated that 1,3-PD exists as a monomer in solution. This enzyme shares 35% sequence identity with 1,3-propanediol oxidoreductase from K. pneumoniae (PDB code 3bfj; Marçal et al., 2009) and 34\% sequence identity with an ironcontaining alcohol dehydrogenase (TM0920) from T. maritima (PDB code 1o2d; Schwarzenbacher et al., 2004). The structure of the 1,3-PD protein (Aq_1145) was solved by employing the MR-SAD protocol as implemented in Auto-Rickshaw (Panjikar et al., 2005, 2009) using a single monomer of the TM0920 structure (PDB code 1o2d) as a search model. Within Auto-Rickshaw, molecular replacement was performed using MOLREP and the program placed four monomers in the asymmetric unit. The resulting model was used for initial refinement, model phase calculations, location of selenium positions based on the model phase, SAD phasing, phase combination, density modification and model building in an automatic manner. Iterative manual building and refinement of the model are currently under way. Details of the structure determination and analysis will be published elsewhere. Comparison of the structure of 1,3-propanediol dehydrogenase with those of other dehydrogenases will provide new structural insights into the molecular mechanism of this enzyme.

JJ thanks the Taiwan beamline BL12B2 of SPring-8 for excellent facilities and assistance.

References

Ahrens, K., Menzel, K., Zeng, A. \& Deckwer, W. (1998). Biotechnol. Bioeng. 59, 544-552.
Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. \& Lipman, D. J. (1997). Nucleic Acids Res. 25, 3389-3402.
Bouvet, O. M., Lenormand, P., Ageron, E. \& Grimont, P. A. (1995). Res. Microbiol. 146, 279-290.
Cameron, D. C., Altaras, N. E., Hoffman, M. L. \& Shaw, A. J. (1998). Biotechnol. Prog. 14, 116-125.
Cheng, K. K., Zhang, J. A., Liu, D. H., Sun, Y., Yang, M. D. \& Xu, J. M. (2006). Biotechnol. Lett. 28, 1817-1821.
Collaborative Computational Project, Number 4 (1994). Acta Cryst. D50, 760-763.
Daniel, R., Boenigk, R. \& Gottschalk, G. (1995). J. Bacteriol. 177, 2151-2156.
French, S. \& Wilson, K. (1978). Acta Cryst. A34, 517-525.
Huber, R., Wilharm, T., Huber, D., Trincone, A., Burggarf, S., Konig, H., Rachel, R., Rockinger, I., Fricke, H. \& Stetter, K. O. (1992). Syst. Appl. Microbiol. 15, 340-351.
LeMaster, D. M. \& Richards, F. M. (1985). Biochemistry, 24, 7263-7268
Luers, F., Seyfried, M., Daniel, R. \& Gottschalk, G. (1997). FEMS Microbiol. Lett. 154, 337-345.
Marçal, D., Rêgo, A. T., Carrondo, M. A. \& Enguita, F. J. (2009). J. Bacteriol. 191, 1143-1151.
Matthews, B. W. (1968). J. Mol. Biol. 33, 491-497.
Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326.
Panjikar, S., Parthasarathy, V., Lamzin, V. S., Weiss, M. S. \& Tucker, P. A. (2005). Acta Cryst. D61, 449-457.

Panjikar, S., Parthasarathy, V., Lamzin, V. S., Weiss, M. S. \& Tucker, P. A. (2009). Acta Cryst. D65, 1089-1097.

Pitulle, C., Yang, Y., Marchiani, M., Moore, E. R., Siefert, J. L., Aragno, M., Jurtshuk, P. J. \& Fox, G. E. (1994). Int. J. Syst. Bacteriol. 44, 620-626.
Raynaud, C., Sarcabal, P., Meynial-Salles, I., Croux, C. \& Soucaille, P. (2003). Proc. Natl Acad. Sci. USA, 100, 5010-5015.
Schwarzenbacher, R. et al. (2004). Proteins, 54, 174-177.
Stetter, K. O. (1996). FEMS Microbiol. Rev. 18, 149-158.
Sugahara, M. \& Miyano, M. (2002). Tampakushitsu Kakusan Koso, 47, 10261032.

Talarico, T. L., Axelsson, L. T., Novotny, J., Fiuzat, M. \& Dobrogosz, W. J. (1990). Appl. Environ. Microbiol. 56, 943-948.

Ueno, G., Hirose, R., Ida, K., Kumasaka, T. \& Yamamoto, M. (2004). J. Appl. Cryst. 37, 867-873.
Ueno, G., Kanda, H., Kumasaka, T. \& Yamamoto, M. (2005). J. Synchrotron Rad. 12, 380-384.
Vagin, A. \& Teplyakov, A. (1997). J. Appl. Cryst. 30, 1022-1025
Veiga da Cunha, M. \& Foster, M. A. (1992). J. Bacteriol. 174, 1013-1019.
Veiga-da-Cunha, M. \& Foster, M. A. (1992). Appl. Environ. Microbiol. 58, 2005-2010.

